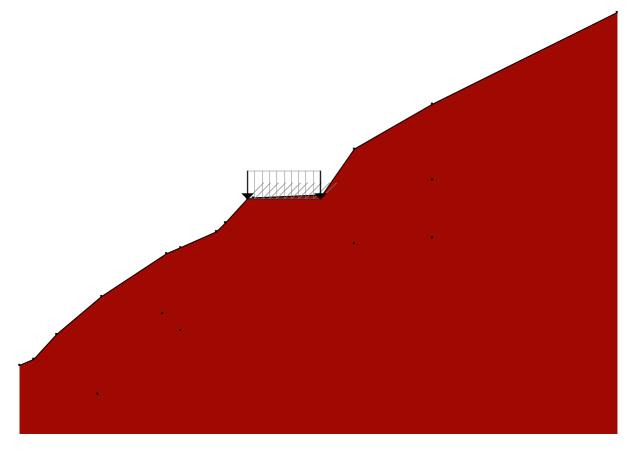
C712-00	000703-04/03/2	021 A - Allegato	Utente 11 (A11)	
		o Ingegn	VIA G.GOZZ	er, 13/B - 38051 BORGO VALSUGANA (TN)
COMUNE	ing. V	ittorio Lore	PROVINCIA	tel. 0461 757134 - fax 0461 756987 info@elledistudio.it - www.elledistudio.it P. IVA 02470640224 OMA DI TRENTO
TAVOLA	E RIPRISTI	NO STRADA CO	_	
	AR/11 ELABORATO REVISIONE 3	RELAZIONE STAB	ILITA' GLOBALE	scala data Marzo 2021
(2 1	DI CINTE TESINO		rif 21/012/AR
redatto	geom. Davor Dalsaso	approvato ing. Vittorio Loi	PROGETTISTA DELL'OPERA	ORDINE DEGLI INGEGNERI DELLA PROV. DI TRENTO dott. ing. VITTORIO LORENZIN ISCRIZIONE ALBO N° 1379


Somma urgenza Cinte Tesino

1 Caratteristiche dei terreni

N	Denominazione	Gamma sat	Gamma nat	Ang.attrito	Coesione	Modulo E	Modulo G
		daN/m ³	daN/m ³	gradi	daN/cm ²	daN/cm ²	daN/cm ²
1	terreno somma urgenza Pieve	2000	1850	29,00	0,150	500	190

2 Geometria degli strati

Vengono mostrate in forma tabellare le sequenze di punti che costituiscono le poligonali di separazione degli strati di terreno.

Strato n.1, materiale sottostante: terreno somma urgenza Pieve

Progressivo	N.	X [cm]	Y [cm]
1	1	1798	1984
2	2	1851	2008
3	3	1931	2100
4	4	2095	2234
5	5	2334	2394
6	6	2385	2415
7	15	2514	2471

Strato n.2, materiale sottostante: terreno somma urgenza Pieve

Progressivo	N.	X [cm]	Y [cm]
1	7	2514	2471
2	8	2545	2504
3	9	2627	2593
4	14	2647	2594
5	10	2898	2606
6	11	3016	2773
7	12	3298	2938
8	13	3971	3270

Strato n.3, materiale sottostante: terreno somma urgenza Pieve

Progressivo	N.	X [cm]	Y [cm]
1	15	2514	2471
2	7	2514	2471

3 Geometria degli interventi

Muro n. 1

Punto di inserimento:

X: 2575 cm Y: 2293 cm

Gamma: 2400 daN/m^3

Resistenza al taglio: 6,00 daN/cm^2

Altezza muro: 300 cm Spessore muro: 100 cm Larghezza suola: 100 cm Altezza suola: 50 cm Piede sinistro: 0 cm Piede destro: 0 cm Disassamento: 0 cm

4 Geometria dei carichi

Le coordinate e le componenti dei carichi stampate in questo paragrafo sono riferite al sistema di riferimento relativo alla sezione trasversale, dove gli assi X e Y locali coincidono rispettivamente con gli assi X e Z globali. L'asse Y globale si sviluppa nella profondità del muro. Tutte le tipologie di carico, esclusa quella puntuale, hanno componenti e coordinate diverse da zero solo lungo gli assi locali X e Y. Nel caso di carichi puntuali viene indicata anche la posizione in profondità (P), riferita rispetto alla sezione trasversale iniziale dell'intervento e quindi lungo l'asse Y globale.

Carico n.1

Tipo di carico: distribuito Punto di inserimento:

X (asse X globale): 2627 cm Y (asse Z globale): 2593 cm

Ampiezza: 265 cm

Valore iniziale: -0,20 daN/cm² Valore finale: -0,20 daN/cm²

5 Descrizione del metodo di calcolo

Metodo di Bishop

Considerato un concio i-esimo si adotta la seguente simbologia:

- W= peso del concio
- c = coesione alla base del concio
- u = pressione neutrale alla base del concio

- α = angolo alla base del concio
- φ = angolo d'attrito interno alla base del concio
- σ = sforzo normale alla base del concio
- ΔX = larghezza del concio
- ΔI = lunghezza della base del concio
- FS = fattore di sicurezza

Si assume che la superficie di scivolamento possa essere assimilata ad un arco di circonferenza. Se si considera la massa interessata dallo scivolamento suddivisa in *n* conci, il fattore di sicurezza può essere espresso in termini di momenti generati dalle forze agenti sui singoli conci rispetto al centro della circonferenza stessa

$$FS = \frac{M_S}{M_R}$$

in cui M_R è il momento delle forze ribaltanti pari a

$$M_R = r \cdot \sum_{i=1}^n W_i \cdot \sin \alpha_i$$

M_S è il momento stabilizzante dato da

$$M_S = r \cdot \sum_{i=1}^{n} (c + \sigma_i \cdot \tan \phi_i) \cdot \Delta l_i$$

dove r rappresenta il raggio dell'arco di circonferenza considerato. Nel metodo di Bishop si assume che le azioni agenti all'interfaccia dei conci abbiano risultante orizzontale, per cui, se si esprime T_i come un'aliquota della resistenza al taglio tramite il fattore di sicurezza FS (assunto uguale a quello dell'equazione generale), e si ricava N_i dall'equilibrio alla traslazione verticale:

$$N_{i} = \frac{W_{i} - u_{i} \cdot \Delta x_{i} - (1/FS) \cdot c \cdot \Delta x_{i} \cdot \tan \alpha_{i}}{\cos \alpha_{i} \cdot [1 + (\tan \alpha_{i} \cdot \tan \phi_{i})/FS]}$$

si ottiene:

$$FS = \frac{\sum_{i=1}^{n} \left[c \cdot \Delta x_i + \left(W_i - u_i \cdot \Delta x_i \right) \cdot \tan \alpha_i \right] \cdot \left[1 / M_i(\alpha) \right]}{\sum_{i=1}^{n} W_i \cdot \sin \alpha_i}$$

con

$$M_i(\alpha) = \cos \alpha_i \cdot \left(1 + \frac{\tan \alpha_i \cdot \tan \phi_i}{FS_i}\right)$$

Per la determinazione di FS è richiesta una procedura per successive approssimazioni: si fissa dapprima un valore di tentativo di FS, calcolato secondo il metodo di Fellenius, e si ricava un successivo valore da introdurre nelle sommatorie, fino a raggiungere attraverso iterazioni un grado di approssimazione pari a 0.001.

6 Descrizione della normativa sismica applicata

Analisi sismica secondo D.M. 17/01/2018 NTC

Ai fini della verifica di stabilità del pendio secondo la normativa D.M. 17/01/2018, in presenza di sisma vengono aggiunte nel baricentro dei conci le seguenti azioni:

$$\begin{split} F_h &= k_h \cdot W & \text{con} & k_h = \beta_s \cdot a_{max}/g & [7.11.3] \\ F_v &= k_v \cdot W & \text{con} & k_v = \pm \ 0.5 \cdot k_h & [7.11.4] \end{split}$$

Essendo:

k_h, k_v = coefficienti sismici orizzontali e verticali;

W = peso complessivo del concio;

 β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

I valori di β_s sono riportati nella Tab.7.11.I della normativa.

Il valore di a_{max} può essere ricavato da specifica analisi di risposta sismica locale (RSL), o in assenza di questa con la relazione semplificata:

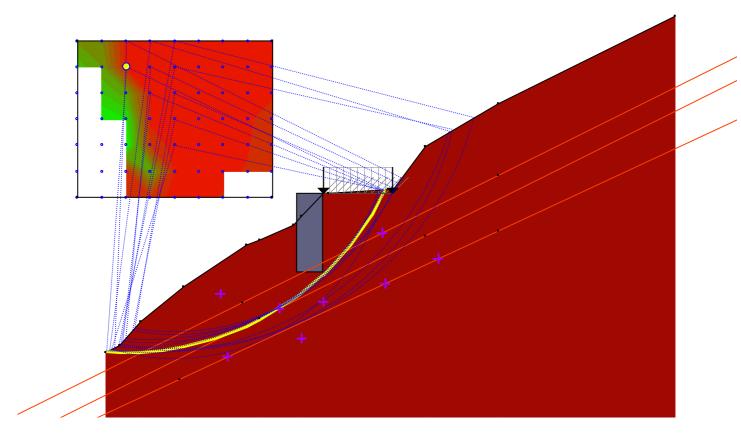
$$a_{\text{max}} = S \cdot a_{\text{q}} = S_{\text{S}} \cdot S_{\text{T}} \cdot a_{\text{q}} \qquad [7.11.5]$$

dove

- S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e topografica (S_T) ;
- a_q = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Tale insieme di forze è considerato diretto verso l'alto e verso il basso dando origine in questo modo a due distinte combinazioni di carichi, con conseguente doppia analisi di stabilità per ogni centro, di cui viene considerato il coefficiente di sicurezza minore.

In presenza simultanea di sisma verticale e orizzontale viene associato contemporaneamente il sistema delle forze F_v e F_h ai pesi dei conci, dando luogo ad una doppia combinazione dei carichi.


L'adeguatezza del margine di sicurezza nei confronti della stabilità del pendio deve essere valutata e motivata dal progettista (§7.11.3.5.2). Nel caso si utilizzi l'analisi per fronti di scavo e rilevati artificiali (§7.11.4) tale margine di sicurezza deve essere non inferiore ai coefficienti parziali γ_B previsti.

7 Parametri di calcolo

```
Normativa adottata per il sisma: D.M. 17/01/2018 Norme tecniche per le costruzioni NTC 2018. Accelerazione relativa Ag/g massima attesa al suolo: 0.15 g
Categoria del suolo di fondazione: E
Coefficiente di amplificazione stratigrafica: 1.6
Coefficiente di amplificazione topografica: 1
Coefficiente di riduzione dell'accelerazione massima per il sito (Beta s): 0.24
```

8 Risultati di calcolo

Vengono disegnate le 10 superfici più critiche, con in evidenza la peggiore trovata.

Simboli usati nella tabella dei risultati:

alfa = angolo alla base del concio in gradi

1 = lunghezza della base del concio

C = coesione di progetto alla base del concio

Tgfi = tangente dell'angolo di attrito di progetto alla base del concio

Xg = ascissa del baricentro del concio

Yg = ordinata del baricentro del concio

b = braccio relativo al peso del concio

Peso = peso complessivo del concio

Pvert = carico verticale complessivo agente sul concio

Ptot = carico totale agente alla base del concio

Press = pressione di falda

Mstab = momento stabilizzante complessivo

MstabS = momento instabilizzante complessivo

Unità di misura utilizzate nella tabella dei risultati: daN,cm

Coefficiente di sicurezza richiesto = 1.2

Minimo coefficiente di sicurezza calcolato FS = 1.633

Caratteristiche del cerchio che comporta il minimo coefficiente di sicurezza:

Ascissa del centro X = 1875.89Ordinata del centro Y = 3075.52Raggio del cerchio R = 1093 cm

Caratteristiche della massa interessata dallo scivolamento:

Volume = 234729 cmc/cm

Peso = 451 daN/cm

Perimetro di scivolamento = 1306 cm

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio senza sisma

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-2.7	51	0.15	0.55	1834	1992	42	1	0	1	0	9149	-59
2	0.8	80	0.15	0.55	1899	2024	24	10	0	10	0	19462	156
3	5	82	0.15	0.55	1975	2062	99	22	0	22	0	26280	2132
4	9.4	83	0.15	0.55	2056	2100	180	31	0	31	0	30994	5495
5	14.8	123	0.15	0.55	2157	2148	281	56	0	56	0	51166	15641
6	21.4	128	0.15	0.55	2275	2207	399	65	0	65	0	56494	25909
7	26.2	57	0.15	0.55	2359	2250	483	29	0	29	0	25192	14080
8	31.7	153	0.15	0.55	2449	2295	573	71	0	71	0	63401	40669
9	36.1	13	0.15	0.55	2520	2334	644	6	0	6	0	5273	3658
10	37.1	25	0.15	0.55	2535	2407	659	18	0	18	0	14148	11581
11	40.5	105	0.15	0.55	2584	2424	708	65	0	65	0	54641	46012
12	43.3	2	0.15	0.55	2626	2436	750	1	0	1	0	957	756
13	44.1	28	0.15	0.55	2637	2442	761	11	4	15	0	13417	11570
14	48.1	125	0.15	0.55	2686	2470	810	38	17	55	0	52668	44947
15	55.3	147	0.15	0.55	2767	2523	891	23	17	39	0	45680	35308
16	61.8	102	0.15	0.55	2830	2574	954	4	10	14	0	21775	13098
		1306				•		451	47	498		490698	270954

Coefficiente di sicurezza FS = 1.81

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale e verticale positivi

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-2.7	51	0.15	0.55	1834	1992	42	1	0	1	0	9184	12
2	0.8	80	0.15	0.55	1899	2024	24	10	0	11	0	19635	796
3	5	82	0.15	0.55	1975	2062	99	22	0	23	0	26582	3487
4	9.4	83	0.15	0.55	2056	2100	180	31	0	32	0	31348	7384
5	14.8	123	0.15	0.55	2157	2148	281	56	0	58	0	51680	19082
6	21.4	128	0.15	0.55	2275	2207	399	65	0	67	0	56918	29904
7	26.2	57	0.15	0.55	2359	2250	483	29	0	30	0	25323	15871
8	31.7	153	0.15	0.55	2449	2295	573	71	0	73	0	63521	45020
9	36.1	13	0.15	0.55	2520	2334	644	6	0	6	0	5269	4006

10	37.1	25	0.15	0.55	2535	2407	659	18	0	18	0	14170	12592
11	40.5	105	0.15	0.55	2584	2424	708	65	0	67	0	54588	49770
12	43.3	2	0.15	0.55	2626	2436	750	1	0	1	0	953	815
13	44.1	28	0.15	0.55	2637	2442	761	11	4	16	0	13369	12458
14	48.1	125	0.15	0.55	2686	2470	810	38	17	57	0	52295	48166
15	55.3	147	0.15	0.55	2767	2523	891	23	17	40	0	45015	37576
16	61.8	102	0.15	0.55	2830	2574	954	4	10	14	0	21255	13868
		1306						451	47	512		491106	300807

Coefficiente di sicurezza FS = 1.63

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale positivo e verticale negativo

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-2.7	51	0.15	0.55	1834	1992	42	1	0	1	0	9139	15
2	0.8	80	0.15	0.55	1899	2024	24	10	0	10	0	19272	787
3	5	82	0.15	0.55	1975	2062	99	22	0	22	0	25843	3365
4	9.4	83	0.15	0.55	2056	2100	180	31	0	30	0	30349	7068
5	14.8	123	0.15	0.55	2157	2148	281	56	0	54	0	49908	18181
6	21.4	128	0.15	0.55	2275	2207	399	65	0	63	0	54897	28412
7	26.2	57	0.15	0.55	2359	2250	483	29	0	28	0	24422	15060
8	31.7	153	0.15	0.55	2449	2295	573	71	0	69	0	61334	42678
9	36.1	13	0.15	0.55	2520	2334	644	6	0	6	0	5093	3795
10	37.1	25	0.15	0.55	2535	2407	659	18	0	17	0	13614	11925
11	40.5	105	0.15	0.55	2584	2424	708	65	0	63	0	52518	47120
12	43.3	2	0.15	0.55	2626	2436	750	1	0	1	0	920	771
13	44.1	28	0.15	0.55	2637	2442	761	11	4	15	0	12877	11792
14	48.1	125	0.15	0.55	2686	2470	810	38	17	54	0	50478	45577
15	55.3	147	0.15	0.55	2767	2523	891	23	17	38	0	43685	35542
16	61.8	102	0.15	0.55	2830	2574	954	4	10	13	0	20801	13114
		1306						451	47	484		475150	285200

Coefficiente di sicurezza FS = 1.67

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale negativo e verticale positivo

Concio	alfa	1	C	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-2.7	51	0.15	0.55	1834	1992	42	1	0	1	0	9159	-134
2	0.8	80	0.15	0.55	1899	2024	24	10	0	11	0	19650	-475
3	5	82	0.15	0.55	1975	2062	99	22	0	23	0	26715	899
4	9.4	83	0.15	0.55	2056	2100	180	31	0	32	0	31637	3923
5	14.8	123	0.15	0.55	2157	2148	281	56	0	58	0	52422	13101
6	21.4	128	0.15	0.55	2275	2207	399	65	0	67	0	58089	23407
7	26.2	57	0.15	0.55	2359	2250	483	29	0	30	0	25962	13100
8	31.7	153	0.15	0.55	2449	2295	573	71	0	73	0	65472	38660
9	36.1	13	0.15	0.55	2520	2334	644	6	0	6	0	5455	3521
10	37.1	25	0.15	0.55	2535	2407	659	18	0	18	0	14686	11238
11	40.5	105	0.15	0.55	2584	2424	708	65	0	67	0	56781	44903
12	43.3	2	0.15	0.55	2626	2436	750	1	0	1	0	994	741
13	44.1	28	0.15	0.55	2637	2442	761	11	4	16	0	13963	11349
14	48.1	125	0.15	0.55	2686	2470	810	38	17	57	0	54885	44316
15	55.3	147	0.15	0.55	2767	2523	891	23	17	40	0	47708	35075
16	61.8	102	0.15	0.55	2830	2574	954	4	10	14	0	22771	13082
		1306						451	47	512		506351	256708

Coefficiente di sicurezza FS = 1.97

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale e verticale negativi

Concio	alfa	1	C	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-2.7	51	0.15	0.55	1834	1992	42	1	0	1	0	9114	-131
2	0.8	80	0.15	0.55	1899	2024	24	10	0	10	0	19288	-484
3	5	82	0.15	0.55	1975	2062	99	22	0	22	0	25977	777
4	9.4	83	0.15	0.55	2056	2100	180	31	0	30	0	30638	3606
5	14.8	123	0.15	0.55	2157	2148	281	56	0	54	0	50648	12200
6	21.4	128	0.15	0.55	2275	2207	399	65	0	63	0	56067	21915
7	26.2	57	0.15	0.55	2359	2250	483	29	0	28	0	25060	12289
8	31.7	153	0.15	0.55	2449	2295	573	71	0	69	0	63287	36318

9	36.1	13	0.15	0.55	2520	2334	644	6	0	6	0	5279	3310
10	37.1	25	0.15	0.55	2535	2407	659	18	0	17	0	14128	10571
11	40.5	105	0.15	0.55	2584	2424	708	65	0	63	0	54707	42253
12	43.3	2	0.15	0.55	2626	2436	750	1	0	1	0	962	697
13	44.1	28	0.15	0.55	2637	2442	761	11	4	15	0	13471	10683
14	48.1	125	0.15	0.55	2686	2470	810	38	17	54	0	53077	41728
15	55.3	147	0.15	0.55	2767	2523	891	23	17	38	0	46407	33041
16	61.8	102	0.15	0.55	2830	2574	954	4	10	13	0	22348	12328
		1306					<u> </u>	451	47	484		490458	241101

Coefficiente di sicurezza FS = 2.03